
International Journal of Heat and Mass Transfer 48 (2005) 3119–3127

www.elsevier.com/locate/ijhmt
Constructal design of forced convection cooled microchannel
heat sinks and heat exchangers

Y.S. Muzychka

Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NF, Canada A1B 3X5

Received 30 December 2004; received in revised form 4 February 2005

Available online 12 April 2005
Abstract

Heat transfer from arrays of circular and non-circular ducts subject to finite volume and constant pressure drop con-

straints is examined. It is shown that the optimal duct dimension is independent of the array structure and hence rep-

resents an optimal construction element. Solutions are presented for the optimal duct dimensions and maximum heat

transfer per unit volume for the parallel plate channel, rectangular channel, elliptic duct, circular duct, polygonal ducts,

and triangular ducts. Approximate analytical results show that the optimal shape is the isosceles right triangle and

square duct due to their ability to provide the most efficient packing in a fixed volume. Whereas a more exact analysis

reveals that the parallel plate channel array is in fact the superior system. An approximate relationship is developed

which is very nearly a universal solution for any duct shape in terms of the Bejan number and duct aspect ratio. Finally,

validation of the relationships is provided using exact results from the open literature.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Microchannels are at the fore front of today�s cooling
technologies. They are widely being considered for cool-

ing of electronic devices and in microheat exchanger sys-

tems due to their ease of manufacture. On a larger scale,

compact heat exchangers also frequently utilize small

passage geometries having characteristic length scales

less than 3 mm. One issue which arises in the use of

microchannels is related to the small length scale of

the channel or duct cross-section. That is, as the charac-

teristic length scale of the cross-section becomes smaller
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and smaller, the propensity for fully developed laminar

flow increases. Since heat transfer coefficient diminishes

with increasing flow length as does the heat transfer

effectiveness of the fluid, it is desirable to maximize heat

transfer for a fixed volume and mean system tempera-

ture. This issue can be addressed by considering the ele-

mental passage geometries and determining the best

passage size and configuration for a fixed volume, which

is to be convectively cooled with a fluid stream supplied

at constant pressure drop.

Bejan and Sciubba [1] first considered this problem

for an array of parallel plates with application to the

cooling of electronic systems. Using the intersection of

asymptotes method, Bejan and Sciubba [1] obtained

expressions for the optimal plate spacing to channel
ed.
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Nomenclature

A flow area, m2

a,b major and minor axes of ellipse or rectangle,

m

Be Bejan number, �DpL2/la
C1,C2,C3 constants

Cp specific heat, J/kgK

d diameter of circular duct, m

Dh hydraulic diameter, �4A/P

E( Æ ) complete elliptic integral of second kind

f friction factor � s=ð1
2
qU2Þ

k thermal conductivity, W/mK

H height, m

‘ reference length scale, m

L duct length, m

L arbitrary length scale, m

n number of sides of polygon

N number of channels or ducts

P perimeter, m

p pressure, N/m2

Po Poiseuille number, � sL=lU
Pr Prandtl number, �m/a
Q heat transfer rate, W

Q heat transfer per unit volume, �Q/HWL

Qw dimensionless Q, � QL2=kðT s � T iÞ
r radius, m

ReL Reynolds number, � UL=m
T s wall or surface temperature, K

Ti fluid inlet temperature, K

U average velocity, m/s

U1 free stream velocity, m/s

W width, m

Greek symbols

a thermal diffusivity, m2/s

� aspect ratio, �b/a

l dynamic viscosity, Ns/m2

m kinematic viscosity, m2/s

q fluid density, kg/m3

s wall shear stress, N/m2

Subscriptsffiffiffi
A

p
based upon the square root of flow area

c circumscribed

Dh based upon the hydraulic diameter

f fluid

i inscribed

l large

L based upon the arbitrary length L

s small

Fig. 1. Convectively cooled finite volume.
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length ratio, bopt/L, and the maximum heat transfer per

unit volume in terms of a dimensionless parameter

which is now referred to as the Bejan number [2,3].

Yilmaz et al. [4] applied an exact method of analysis

to obtain results for a single duct for the equilateral tri-

angle, square, circular, and parallel plate geometries.

The method of analysis is quite involved due the use

of of complex generalized empirical correlations devel-

oped by one of the authors [4]. The authors [4] also pro-

posed an empirically based formula for the optimal duct

shape for these configurations. Fisher and Torrance [5]

considered similar problems with conduction effects in

the solid array. Finally, Favre-Marinet et al. [6] con-

ducted experiments on microchannels to provide exper-

imental evidence supporting the results reported in

Bejan and Sciubba [1].

In the present work, the approximate analysis meth-

od of Bejan and Sciubba [1] is applied to several other

channel shapes to determine the optimal passage size

to length ratio in terms of the Bejan number. It will be

shown that these optimal dimensions are independent

of the array configuration and thus represent a basic

constructional unit for built up systems. These optimal

scales are then applied to arrays of passages to deter-

mine the maximum heat transfer rate per unit volume.
Depending upon the passage shape, several potential

packing arrangements can be chosen, each with its

own characteristic performance. Results for individual

shapes are compared with those reported in Yilmaz

et al. [4].
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2. Hydrodynamic and thermal analysis

The system under consideration consists of a fixed

volume to be cooled by means of laminar forced convec-

tion. The volume also contains an array of circular or

non-circular passages, as shown in Fig. 1. These pas-

sages may be arranged in such a manner that their

number is maximized. Of particular interest are pass-

ages which are rectangular, elliptical, polygonal, or

triangular.

The following assumptions are made throughout the

analysis: the duct walls are isothermal (negligible con-

duction resistance in the array), uniform flow distribu-

tion (equal flow in all ducts or channels), laminar flow,

constant cross-sectional duct area, no inlet or exit ple-

num losses, Prandtl number range Pr > 0.1, and a finite

control volume (V = HWL).

2.1. Small ducts or channels

In the case of an array of ducts or channels with

small cross-sectional characteristic reference length

scale, the enthalpy balance for fully developed flow gives

Qs ¼ qUNACpðT s � T iÞ ð1Þ

where A is the cross-sectional area of an elemental duct

or channel, N is the total number of ducts or channels,

T s is the mean wall temperature, and Ti is the fluid inlet

temperature.

The mean velocity, U , in any one duct or channel

assuming uniform flow distribution, may be determined

from the fully developed flow Poiseuille number defined

as

PoL ¼ swL

lU
¼ ðA=P ÞðDp=LÞL

lU
ð2Þ

or

U ¼ ADpL
lPLPoL

ð3Þ

where L is the characteristic length scale used to define

the Poiseuille number. Combining the above two results

gives the heat transfer rate in terms of the fundamental

flow quantities

Qs ¼
qCpA

2DpLNðT s � T iÞ
lPLPoL

ð4Þ

Eq. (4) may be written in alternate form

Qs ¼
qCpðT s � T iÞDp

l|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
System

NA2L

PLPoL|fflfflffl{zfflfflffl}
Geometry

ð5Þ

The Poiseuille number is reported for some forty dif-

ferent configurations in Shah and London [7] as

fReDh
= 2PoDh

, where Dh is the hydraulic diameter de-

fined as Dh = 4A/P. PoDh
is a numerical constant which
varies with shape. Most geometric shapes have 6 <

PoDh
< 12.

The value of N for a given array must be determined

for the cross-section, HW, in terms of a characteristic

dimension of the duct or channel in the array. Consider-

ing that N � HW/‘2, where ‘ is the reference length

scale, it can easily be shown that the heat transfer rate

has the following dependency:

Qs � C1‘
2 ð6Þ

when A, P, and L are known in terms of ‘. For example

for parallel plates this would give ‘ � b, the plate

spacing.

However, as we will see shortly, in the present deriva-

tion N appears in both asymptotic limits and thus can-

cels, and as such does not affect the outcome of the

optimization. It will be shown that the solution is valid

for the case of a single channel or an array of similar

sized channels. The array is then constructed from these

basic unit cells.

2.2. Large ducts or channels

In the case of an array of non-circular ducts or chan-

nels with large cross-sectional characteristic length scale,

the heat transfer rate may be adequately approximated

as boundary layer flow in this limit, Muzychka and

Yovanovich [8]. The heat transfer rate is determined

from

Ql ¼ hNPLðT s � T iÞ ð7Þ

where h may be defined from the expression for laminar

boundary layer flow over a flat plate

hL
kf

¼ 0:664
U1L
m

� �1=2

Pr1=3 ð8Þ

The free stream velocity U1, is obtained from a force

balance on the array

swPLN ¼ NADp ð9Þ

where the mean wall shear stress is obtained from the

boundary layer solution

sw
1
2
qU 2

1
¼ 1:328

U1L
m

� ��1=2

ð10Þ

Combining Eqs. (9) and (10) gives the following re-

sult for U1:

U1 ¼ 1:314
DpA

PL1=2q1=2m1=2

� �2=3

ð11Þ

Finally, combining Eqs. (7), (8) and (11) yields the

following result for the heat transfer rate

Ql ¼ 0:7611NkfðT s � T iÞ
DpAP 2LPr

qm2

� �1=3

ð12Þ
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We may write Eq. (12) in an alternate form

Ql ¼ 0:7611
kfðT s � T iÞDp1=3Pr1=3

q1=3m2=3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
System

N AP 2L
� �1=3

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Geometry

ð13Þ

Once again, we see that the heat transfer rate is di-

rectly proportional to the number of ducts or channels

in the array. Considering that N � HW/‘2, where ‘ is

the reference length scale of the cross-section, it can eas-

ily be shown that the heat transfer rate has the following

dependency:

Ql � C2‘
�2=3 ð14Þ
2.3. Optimal duct or channel size

The optimal duct or channel size may be found by

means of the method of intersecting asymptotes [9,10].

The exact shape of the heat transfer rate curve may be

found using more exact methods such as expressions

found in Shah and London [7] for individual geometries.

As shown in Fig. 2, the curves should be somewhat

dependent on the duct shape. However, the intersection

point of the two asymptotic results is relatively close to

the exact point. In this way, an approximate value for

the reference duct dimension may be found. Intersecting

Eqs. (5) and (13) gives

0:7611
kfðT s � T iÞDp1=3Pr1=3

q1=3m2=3
N AP 2L
� �1=3

� qCpðT s � T iÞDp
l

NA2L

PLPoL
ð15Þ

Since N, appears on both sides of the equation, we

can conclude that the optimal duct size is determined

as a result of the length constraint and the pressure drop

constraint and not that of the array. In other words,

each optimal duct geometry represents a basic construc-

tional element for the array, such that the array is also

optimal.
Fig. 2. Method of intersecting asymptotes.
After simplifying and collecting the system and

geometry terms, the above equation may be written in

the following form:

Be1=4 � 0:9027L

A
P

� �5=8 L
PoL

� �3=8
ð16Þ

where Be = DpL2/la is the Bejan number as defined in

[2,3]. The right hand side is only a function of the duct

shape and aspect ratio, while the left hand side is a sys-

tem parameter which is constant and independent of

duct shape or aspect ratio once a cooling volume,

V = HWL, is specified. When the hydraulic diameter is

chosen, L ¼ 4A=P , the optimal solution is determined

by solving

Be1=4 � 0:5365
PL
A

Po3=8Dh
ð17Þ

This result can now be applied to several fundamen-

tal shapes that are often used in convection cooling of

finite volumes. Later, we will re-examine Eq. (16) using

an approximate universal value for Po ffiffi
A

p when

L ¼
ffiffiffi
A

p
. This form allows for all of the shapes to be

considered to be modeled with a single expression. Fi-

nally, all of the results in the present work are applicable

for laminar flows or in terms of the Bejan number, the

range defined [1] by

Be1=4 K 103Pr1=2 ð18Þ
2.4. Maximum heat dissipation

The maximum heat transfer rate for a fixed volume

can be obtained from Eq. (5) using the optimal result

determined by Eq. (17). The number of ducts or chan-

nels N, which appears in the final result may then be cast

in terms of the cooling volume cross-section HW. In this

way, the maximum heat transfer per unit volume may be

determined. Subsequent results may then be presented in

terms of the following dimensionless heat transfer per

unit volume:

QH K QL2

kðT s � T iÞ
¼ C3Be1=2 ð19Þ

where Q ¼ Q=ðHWLÞ is the heat transfer per unit volume,

and C3 is a numerical constant determined from the duct

geometry.
3. Elemental geometries

We may now consider several common geometries

which are convenient in electronics cooling and compact

heat exchanger design. These include arrays of parallel

plates, circular tubes, rectangular channels, elliptic

ducts, polygonal ducts, and triangular ducts, as shown

in Fig. 3.



Fig. 3. Elemental geometries being considered.
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3.1. Parallel plates

The problem of a finite volume cooled by a stack of

parallel plates (or channels) was first considered by

Bejan and Sciubba [1]. The following geometric para-

meters are required in the general analysis:

A ¼ ab ð20Þ

P ¼ 2a ð21Þ

Dh ¼ 2b ð22Þ

PoDh
¼ 12 ð23Þ

Substituting the above results into Eq. (17) gives the

following results for the optimal plate spacing:

bopt
L

� 2:726Be�1=4 ð24Þ

The maximum heat transfer rate for N � H/b chan-

nels is

QH K 0:6192Be1=2 ð25Þ

The above results are precisely the same as those ob-

tained by Bejan and Sciubba [1] which are also reported

in Bejan [9,10].

3.2. Circular tubes

If circular tubes are used to form an array of internal

flow channels, the following geometric parameters are

required:

A ¼ pd2=4 ð26Þ

P ¼ pd ð27Þ

Dh ¼ d ð28Þ

PoDh
¼ 8 ð29Þ
Substituting the above results into Eq. (17) gives the

following results for the optimal tube diameter:

dopt

L
� 4:683Be�1=4 ð30Þ

The maximum heat transfer rate for the maximum

number of tubes arranged on square centers where

N � HW/d2, is

QH K 0:5382Be1=2 ð31Þ

The maximum dimensionless heat transfer is only

8.69% lower than the case for parallel plate chan-

nels. This difference can be attributed to the fact that

tubes cannot fill the volume of space as efficiently

as plane channels. This leads us to consider other

geometries which allow for more efficient packing

arrangements such as rectangular ducts and triangular

ducts.

3.3. Rectangular ducts

In the case of an array of rectangular ducts having

major axis a and minor axis b, the necessary geometric

parameters are

A ¼ ab ð32Þ

P ¼ 2aþ 2b ð33Þ

Dh ¼ 2ab=ðaþ bÞ ð34Þ

PoDh
¼ 12

ð1þ �Þ2 1� 192�
p5 tanh p

2�

� �	 
 ð35Þ

where the duct aspect ratio is defined as � = b/a. Eq. (35)

represents a single term approximation for the Poiseuille

number with a maximum error of 0.5%, which occurs

for the limit � = 1. Combining the above equations in

Eq. (17), leads to

bopt
L

�
1:0735ð1þ �ÞPo3=8Dh

Be1=4
ð36Þ

for the optimal minor axis dimension.

The maximum heat transfer rate using N � HW/ab is

QH K
1:152Be1=2

Po1=4Dh

ð37Þ

The following limits are obtained from the above

equation:

QH K 0:6192Be1=2; � ! 0

QH K 0:7068Be1=2; � ! 1
ð38Þ

The results for bopt/L and Qw are tabulated in Table 1

as a function of �. It is clear that aspect ratio has only a

small effect on the maximum heat transfer rate and that

there is no optimal value.



Table 2

Results for the elliptic duct

� = b/a PoDh
(bopt/L)Be

1/4 Qw/Be1/2

0.01 9.87 3.226 0.5106

0.10 9.65 3.250 0.5134

0.20 9.30 3.314 0.5183

0.30 8.95 3.409 0.5233

0.40 8.65 3.532 0.5278

0.50 8.41 3.679 0.5314

0.60 8.24 3.847 0.5342

0.70 8.12 4.034 0.5361

0.80 8.05 4.237 0.5373

0.90 8.01 4.454 0.5379

1.00 8.00 4.683 0.5382

Table 1

Results for the rectangular duct

� = b/a PoDh
(bopt/L)Be

1/4 Qw/Be1/2

0.01 11.84 2.739 0.6213

0.10 10.58 2.860 0.6390

0.20 9.54 3.000 0.6559

0.30 8.76 3.147 0.6701

0.40 8.19 3.304 0.6816

0.50 7.78 3.472 0.6905

0.60 7.49 3.651 0.6971

0.70 7.31 3.841 0.7016

0.80 7.19 4.042 0.7046

0.90 7.13 4.252 0.7062

1.00 7.12 4.470 0.7068
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3.4. Elliptic ducts

In the case of an array of elliptic ducts having major

axis a and minor axis b, the necessary geometric param-

eters are

A ¼ pab=4 ð39Þ

P ¼ 2aEð�0Þ ð40Þ

Dh ¼
pb

2Eð�0Þ ð41Þ

PoDh
¼ ð1þ �2Þ p

Eð�0Þ

� �2
ð42Þ

where E(� 0) is the complete elliptic integral of the second

kind of complementary modulus �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
and the

duct aspect ratio is defined as � = b/a. Combining the

above equations in Eq. (17), leads to

bopt
L

�
1:367Eð�0ÞPo3=8Dh

Be1=4
ð43Þ

for the optimal minor axis dimension.

The maximum heat transfer rate with N � HW/ab is

QH K
0:9051Be1=2

Po1=4Dh

ð44Þ

The following limits are obtained from the above

equation:

QH K 0:5106Be1=2; � ! 0

QH K 0:5382Be1=2; � ! 1
ð45Þ

The results for bopt/L and Qw are tabulated in Table

2 as a function of �. In the case of the elliptic duct, the

range for Qw is much smaller than that for the rectan-

gular duct and once again there is no optimal aspect

ratio.
3.5. Polygonal ducts

In the case of an array formed as a result of using

polygonal ducts of side dimension b, the necessary geo-

metric parameters are

A ¼ n
4
b2 cotðp=nÞ ð46Þ

P ¼ nb ð47Þ

Dh ¼ b cotðp=nÞ ð48Þ

Also of importance are the inscribed and circum-

scribed diameters of a regular polygon in terms of the

side dimension b

d i ¼ b cotðp=nÞ ð49Þ

dc ¼
b

sinðp=nÞ ð50Þ

These dimensions may be used to determine the nom-

inal number of polygonal shapes that can be fit in an

array if the ducts are arranged in a similar manner as

circular tubes. Clearly, some shapes such as the triangle,

square, and hexagon, allow for more efficient packing.

We only consider one special case for maximum packing

ability: the triangle, since the square has already been

considered earlier.

Using the above relationships in Eq. (17), leads to the

following expression for the optimal inscribed diameter

which also happens to be the hydraulic diameter of a

regular polygon:

di;opt

L
�

2:147Po3=8Dh

Be1=4
ð51Þ

The Poiseuille number for regular polygons with

3 < n 6 8 is given in Table 3. Beyond n = 8, the Poiseu-

ille number approaches that of the circular tube, n = 1.

For most practical design problems n 6 8 suffices.

First, if we only consider packing arrangements of

polygons arranged according to their circumscribed



Fig. 4. Some possible packing arrangements: (a) Circumscribed

polygons; (b) square ducts; (c) equilateral triangle; and (d)

isosceles right triangle.

Table 3

Results for polygonal geometries

n PoDh
(di,opt/L)Be

1/4 Qw/Be1/2

3 20/3 4.373 0.2329

4 7.114 4.481 0.3528

5 7.369 4.541 0.4157

6 7.527 4.577 0.4519

7 7.655 4.606 0.4740

8 7.706 4.617 0.4891

1 8 4.683 0.5382
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boundary as shown in Fig. 4(a), such that N � HW =d2
c ,

then the maximum heat transfer rate can be shown to be

QH K 0:1440n sinð2p=nÞBe1=2

Po1=4Dh

ð52Þ

This equation approaches the solution for the tube in

the limit of n ! 1. For all values of n, the packing is not

very efficient. Results are summarized in Table 3.

On the other hand, if we consider the special arrange-

ment that a triangular duct may have (as shown in Fig.

4(c)) where N � 2
ffiffiffi
2

p
HW =ð

ffiffiffi
3

p
b2Þ, then the maximum

heat transfer rate can be shown to be

QH K 0:7172Be1=2 ð53Þ

which is comparable to the square channel shown in Fig.

4(b).

3.6. Isosceles triangular ducts

Finally, we may also examine isosceles triangular

ducts in general, but only the special case of an isosceles

right triangle is considered, refer to Fig 4(d). The isosce-

les right triangle is particularly useful since it can be uni-

formly packed into two arrangements of 2 or 4 elements

in a square packing arrangement. The geometric charac-

teristics of an isosceles right triangle of leg d are

A ¼ 1

2
d2 ð54Þ
P ¼ ð2þ
ffiffiffi
2

p
Þd ð55Þ

Dh ¼
2d

ð2þ
ffiffiffi
2

p
Þ

ð56Þ

PoDh
¼ 6:577 ð57Þ

Using the above relationships and Eq. (17) we may

determine the optimal leg dimension of the isosceles

right triangle to be

dopt

L
� 7:428

Be1=4
ð58Þ

Finally, the heat transfer rate for two or four element

packing arrangement such that N � 2HW/d2 is

QH K 0:7196Be1=2 ð59Þ

This result is the largest value of the dimensionless

heat transfer per unit volume providing 1.8% greater

heat transfer than the square cell. However, since we

are not dealing with exact solutions, this marginal in-

crease is likely not realizable in practice. But that is

not to say that this is not a useful shape. In many com-

pact heat exchangers triangular passages are formed

through rolled fin processes as are square channel

arrangements. Therefore, both shapes are the likely can-

didates for heat sink or heat exchanger designs contain-

ing small channels.

3.7. Arbitrary shaped ducts

Eq. (16) can be generalized further such that particu-

lar values of PoL are not required. Muzychka and

Yovanovich [11,12] showed that the Poiseuille number

is a weak function of duct shape and can be predicted

within 10% for most duct shapes as a function of aspect

ratio only, when the characteristic length scale is

L ¼
ffiffiffi
A

p
. The expression for the rectangular duct has

been proposed as a general model [11]

Po ffiffi
A

p ¼ 6ffiffi
�

p
ð1þ �Þ 1� 192�

p5 tanh p
2�

� �	 
 ð60Þ

The above equation predicts the Poiseuille number

for the shapes considered within 7.5%. Eq. (16) may

now be written in the form

Be1=4 ¼
0:9027LPo3=8ffiffi

A
p

A=Pð Þ5=8A3=16
ð61Þ

after the inclusion of L ¼
ffiffiffi
A

p
. Since the Poiseuille num-

ber appears to the 3/8 power, the small error introduced

by the approximation of the Poiseuille number with Eq.

(60) becomes even smaller. The maximum error in using

Eq. (61) is approximately 2.5% when compared with the

results reported earlier.



Table 4

Exact values of (di,opt/L)Be
1/4 for polygons versus Prandtl

number [4]

Pr Triangle Square Circular
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4. Discussion

Several new approximate solutions for the optimal

duct geometry have been obtained using the simple ap-

proach of Bejan and Sciubba [1]. For the most common

and useful shapes examined, we see that arrays of square

channels and equilateral or isosceles right triangles ap-

pear to yield maximum heat transfer per unit volume.

The differences in these three shapes is small. On the

basis of most efficient packing, the square and isosceles

right triangles appear to be superior. Intuition would

tend to agree with these results, as polygonal type shapes

have the lowest Poiseuille numbers and hence lower flow

resistance, while at the same time, these duct shapes can

also provide for a large surface area per unit volume.

Whereas parallel plates have the highest Poiseuille num-

ber and do not provide the ability for maximum heat

transfer surface if they have the same spacing as a square

duct. However, a quick review of the results show that

the optimal duct size for a square duct is nominally lar-

ger than that of the parallel plates for the same Bejan

number. Thus more surface could conceivably be packed

into a fixed volume with parallel plates spaced closer to-

gether. Further, due to the nature of the approximate

method, no absolute conclusion can be made as to which

system is better, square duct or parallel plates? In any

case, to answer these questions, one must examine more

exact results using appropriate heat transfer and friction

models for each shape.

0.1 4.946 5.000 5.261

1 4.515 4.635 4.971

10 4.748 4.822 5.234

100 4.728 4.885 5.284

Mean 4.734 4.836 5.188

Table 5

Exact values of Qw/Be1/2 for polygons versus Prandtl number

[4]

Pr Triangle Square Circular

0.1 0.2769 0.2687 0.2348

1 0.3972 0.4127 0.3369

10 0.4499 0.4647 0.3783

100 0.4568 0.4723 0.3843

Table 6

Exact values for parallel plates versus Prandtl number [1]

Pr (bopt/L)Be
1/4 Qw/Be1/2

0.72 3.033 0.479

6 3.077 0.522

20 3.078 0.527

100 3.055 0.526

1000 3.025 0.523
5. Comparisons with more exact solutions

We now examine the accuracy of the solutions ob-

tained using the order of magnitude approach by com-

paring these predictions with more exact results

obtained from [1,4], for the parallel plate channel, circu-

lar duct, square duct, and triangular duct. The optimal

solutions to the parallel plate configuration [1] were ob-

tained using correlations for fluid friction and heat trans-

fer which may be found in Shah and Sekulic [13] or Shah

and London [7]. In the case of the triangular, square, and

circular ducts, the correlations were generalized formula-

tions developed by one of the authors of reference [4].

The results from Yilmaz et al. [4] were not presented

in terms of the Bejan number and required conversion to

the notation used in the present work. Further, the re-

sults for heat transfer were only presented for a single

duct, not an array of ducts. The results for both heat

transfer and optimal duct diameter have been converted

to the present notation and are summarized in Tables 4

and 5. The mean values of the results presented in Table

4 for the optimal duct diameter are in excellent agree-

ment with the approximate method presented earlier.

The approximate results are 8.3%, 8.2%, and 10.8%

lower than the more exact and rigorous analysis.
The results of Bejan and Sciubba [1] are also pre-

sented for completeness in Table 6. In the case of the

optimal plate spacing, the exact predictions are approx-

imately 11.7% higher than the simple approach. In all

cases, the agreement between the approximate maxi-

mum heat transfer rate and the exact value increases

with Prandtl number as shown in Tables 5 and 6. Two

points need to be highlighted regarding the approximate

method. First, the order of magnitude is correctly pre-

dicted for both parameters. Second, as discussed by

Bejan and Sciubba [1], since the optimal duct dimension

prediction has acceptable accuracy, one may then use

conventional methods to calculate the heat transfer rate

using the predicted geometry. Finally, although the

order of magnitude method predicted that the square

and triangular ducts had higher heat transfer per unit

volume, the exact solutions clearly show that the parallel

plate channel is the superior performer with approxi-

mately 10–15% greater performance depending on Pra-

ndtl number. This contradiction in results is due to the

nature of the method of asymptotes. In these cases the

actual heat transfer curve is lower for the square, while

the intersection point of the asymptotes is higher for
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the square, when compared with the parallel plate

geometry.
6. Summary and conclusions

Heat transfer from arrays of microchannels was con-

sidered for fixed volume and fixed pressure drop con-

straints. Order of magnitude relationships were

developed for the optimal reference dimension of a num-

ber of fundamental duct shapes including the rectangle,

ellipse, and regular polygons. An approximate expres-

sion for the optimal duct shape was developed for all

ducts considered. Comparison of the approximate re-

sults with exact results from the literature show excellent

agreement for the optimal duct dimensions. Maximum

dimensionless heat transfer per unit volume also agreed

well with exact results, however, more accurate results

should be computed using conventional methods once

the optimal geometry is found using the present ap-

proach. A simple general expression for optimal duct

shape was developed.
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